点缺陷
石墨烯的点缺陷是由于C-C键的旋转而形成的,因此该缺陷的形成并没有使石墨烯分子内发生碳原子的引入或者移除,也不会产生具有悬键的碳原子。这种缺陷的形成能大约为5eV,这样高的形成能导致点缺陷在至少1000°C下的平衡浓度可以忽略。点缺陷可以由于电子束轰击或者在高温环境中快速冷却产生。点缺陷的TEM图像和计算得到的原子排布结构图,其缺陷形成的原因可能为高能电子的轰击。
单空穴缺陷
如果在连续排列的碳六元环中丢失一个碳原子,石墨烯上就会形成单空穴缺陷。很显然,一个碳原子的丢失必然造成与本来与其相连的三个共价键断裂,其结果是形成了三个悬键。Jahn-Teller效应影响下,为了降低分子整体能量,石墨烯丢失碳原子区域发生结构重排,最终两个悬键彼此连接,剩余一个悬键,同时区域结构调整,层面突起。不难想象,这样拥有一个悬键的缺陷形成需要比点缺陷更高的能量,相关研究的理论计算表明,这种缺陷的形成能大约为7.5eV。
多重空穴缺陷
单空穴缺陷的基础上,如果再丢失一个碳原子,就会产生多重空穴缺陷,三种观察到的多重空穴缺陷的TEM照片和其原子排布结构图。最易理解的一种多空穴缺陷,其是在单空穴缺陷的基础上丢失那个具有悬键的碳原子而形成的。模拟计算表明,这种多空穴缺陷的形成能为大约8eV。虽然这种缺陷最容易为人理解,但是,理论计算表明,一定条件下,后者更易形成,原因是其形成能更低,约为7eV,实验也证明了这一计算,即这种缺陷出现的概率确实大于前者。
线缺陷
在使用化学气相沉积方法制备石墨烯的过程中,石墨烯会在金属表面的不同位置开始生长,这样生长的随机性导致不同位置生长的石墨烯会有不同的二维空间走向,当这些石墨烯生长到一定大小后,开始发生交叉融合,融合的过程中由于起始晶取向的不同开始出现缺陷,这种缺陷通常呈现线型。图1-5展示了这种石墨烯线缺陷。
不同晶取向的石墨烯在边缘交叉的位置开始出现线缺陷,图1-5b是这些线型交叉位置的放大图,从图中可以更加明显的看出线缺陷所造成的紊乱原子排列。类似这样的石墨烯线缺陷现象还曾被多次发现。
面外碳原子引入缺陷
单空穴和多重空穴缺陷形成时产生的丢失碳原子,并不一定完全脱离石墨烯,很多时候,这些碳原子在脱离原始碳六元环后,形成了离域原子而在石墨烯表面迁移。当其迁移至石墨烯某一位置时,会形成新的键。
由于石墨烯的很多缺陷如点缺陷,单空穴缺陷等也可以进行迁移,于是不难想象,当丢失碳原子遇到这些缺陷时,可能弥补这些缺陷。但是,当丢失碳原子运动到本身没有缺陷的石墨烯区域时,则有可能造成新的缺陷,这样的缺陷将破坏该区域原有的平面结构,形成立体结构。面外碳原子引入缺陷显示了这样缺陷的空间排布,对应的丢失碳原子引入位置。
由于面外碳原子引入缺陷或者具有非常快的迁移速度,或者具有很高的形成能量,实际试验中,很难通过各种显微技术(如透射电子显微镜,扫描隧道显微镜等)捕捉到,目前还没有见到有关面外碳原子引入缺陷的观测报道。但基于早期对于活性炭活化机理的研究表明:碳、氧原子可以在碳层表面迁移。因此面外碳原子引入缺陷的存在性是可以确认的,因此目前有很多关于这种缺陷形成能及迁移能量的理论值研究报告。
实际上,面外碳原子引入缺陷应该存在多种空间构型,且随着引入原子数量的增多,其空间构型也趋于复杂。上述理论研究提供了详细的各种面外碳原子引入缺陷的形成及迁移能量,为后期选择观测方法和观测条件提供了非常有意义的数据。面外碳原子缺陷的存在,无疑破坏了石墨烯整体的二维空间晶型。特别是有些缺陷,改变了碳原子的轨道杂化类型,使得石墨烯内部出现sp3杂化轨道碳,这样的缺陷势必影响石墨烯电学特性,利用这样缺陷的可行性研究目前正在开展。当然,如何使这样的缺陷具有可控性,对研究人员来说是个很大的挑战。
石墨烯外引入缺陷
石墨烯外引入缺陷具体又可以分为两类:一类为面外杂原子引入缺陷,一类为面内杂原子取代缺陷。以下将分述此两类缺陷。