研究电晕放电的微观物理过程及放电机制,应首先解决无法定量描述电晕放电微观物理过程以及实验测试条件限制等问题。目前国际上还没有气体中空间电荷的测试方法,也没有实现空间电荷分布测量的成功案例。课题组通过5年的尝试与摸索,研究出一种声脉冲法的测量方法,利用超声波换能器发生超声脉冲对空间电荷进行调制,并建立一种信号还原算法对调制产生的电场信号进行还原。根据测试的原理,按照1:1的比例在实验室搭建了一套与之对应的实验设备,最终实验测量到了空间电荷的分布。
课题组在电晕放电控制方程中考虑了光电离和二次电子崩发射的影响,改进了描述电晕放电微观物理过程的控制方程,使得电晕放电的控制方程与实际情况更为贴切。通过解析方程可以清晰得到电晕放电过程,电子是如何增殖的,各种粒子是如何扩散的,电晕放电过程中各类微观粒子的变化趋势。因此,对电晕的起始、发展及增值过程有了更清楚的认识与明确的界定,为进一步开展输电线路电磁环境特性的研究奠定了理论基础。
特高压电晕放电及电磁环境特性评估
在输变电工程的设计阶段,可以通过建模对多种导线选型进行分析计算,对电晕放电的影响因子进行预测,最终选取最佳设计方案,使其满足电磁环境限值的要求。
传统的方法主要是在一系列试验的基础上总结出经验公式,例如计算起晕场强的Peek公式、计算电晕损失的皮德森公式,利用经验公式进行分析计算。经验公式简单,使用便捷,但其适用性有很大的限制,也没有考虑到环境因素对电晕放电的影响。另外,特高压电晕放电与传统超高压有何异同?以往的计算方法在特高压中是否适用?这些问题根据过去的研究成果也无法确定。面对这些问题,课题组在前述电晕放电特性研究基础上,深入研究了输电线路电晕放电的宏观等值物理模型,提出了输电线路电晕放电电磁环境评估方法。在过去研究基础上,研究人员舍弃了众多假设,建立了无量纲模型,得到了适用于特高压输电线路电晕起始和自持判据,明确了电晕放电计算的边界条件,为电磁环境评估及相关计算奠定了基础。
我国特高压直流输电线路走廊环境复杂,附近存在建筑物、树木及地表变化等。目前国际上仍采用二维离子流及合成电场评估方法。课题组改进了二维离子流场的计算方法,将边界电场约束方程法应用于子导线表面电场强度计算,加快计算速度,采用电位排序方法从而加速了算法收敛,在此基础上发展得到了三维离子流场的计算方法。
课题组还从电晕损失产生的机理出发研究并得到了新的电晕损失计算方法,并在武汉、北京的特高压基地进行了不同环境条件下电晕损失现场测量实验。相比于传统的计算方法,新的计算方法考虑了环境因素对电晕损失的影响,使计算结果更为准确,与现场的数据吻合较好。
从电晕放电的机理出发,到离子流场的计算,以及最后电晕损失的求解,课题组开展了系统且细致的研究,提出了一种特高压输电线路电磁环境的评估方法,最终很好地运用到特高压电磁环境现场评估中。本成果陆续在锡盟—山东、淮南—南京—上海、榆横—潍坊1000千伏特高压交流,上海庙—山东、锡盟—泰州±800千伏特高压直流工程设计中得到了应用。