二是可再生能源大规模接入对于电网调度提出的挑战。传统的发电计划基于电源的可靠性以及负荷的可预测性,但部分可再生能源电站出力的不可控性和随机性使得对其既不能进行可靠的负荷预测,也不可能制定和实施精确的发电计划。随着这类随机电源容量比例的增加,必将给电网调度带来不少压力。在能源互联网的大背景下,各国之间针对即将出现的可再生能源波动必须要考虑容许通过的输电可能,因此互联状态下的全网备用和可使用信息将成为网络安全的重要突破点。
三是大规模分布式能源接入对电网的稳定技术提出挑战。未来大规模分布式电源将通过特高压网架实现跨国跨洲传输,使得电网成为全球互联的能源网络。这将使各国电网之间的电气联系大大加强,广域动态交互影响加剧,电网稳定特性变得更加复杂。再加上大规模的风能、太阳能等清洁能源发电的随机性、间歇性和波动性特点,将给电网的安全稳定运行带来更大的风险,对电网稳定控制技术提出更高的要求。现有的电网保护和安稳系统,大多采用当地或区域内的信息,通信系统对其影响有限。但全球互联后,广域保护和跨洲的安稳系统会大量出现,通信的中断,延时和误码问题会变得突出,其对稳定控制的影响也会越来越大。如何在通信系统发生故障的情况下保证控制装置不拒动、误动,并保证其动作的时效性,是必须加以研究的课题。
四是储能管理将在未来能源互联网中处于重要地位。可再生能源在未来能源互联网中将占有极其重要的位置,储能发挥着降低可再生能源不稳定性的重要作用。为了有效弥补可再生能源发电的波动性,需要有良好的经济性和长寿命的大容量储能装置。研发高效储能装置及其配套设备,与风电、光伏发电机组容量相匹配,支持充放电状态的迅速切换,确保并网系统的安全稳定已成为可再生能源充分利用和能源互联网建设的关键。
五是可再生能源进入电网对电力市场交易运营提出挑战。如果北极和赤道作为能源基地与各国电网相连,那么电的供需形势将随着各国的资源、时差、生产和生活状况随时变化,因此其价格多变也成为必然。这种情况下,电的24小时变化价格的商品特性也许会让电这一未来最重要的能源形式成为人们财富交换和资源交易的中介。在各国电网广泛互联状态下也许会催生更多的电力交易互联网商业模式,而这一体系的设计也是各国政治和经济发展的重要着力点。