1.2 带宽特性
带宽是光纤波导的一个重要特点,带宽大小决定了光纤的信息传输能力。增加光纤带宽通常有两种方法:减小光纤芯的数值孔径(NA),较小的NA 使得光纤中具有传输较低阶的模式, 从而减小了模间色散,故能使光纤带宽得到提高;改变光纤芯的折射率,当梯度折射率光纤具有接近于抛物型的最佳折射率分布时,光纤的模间色散最小,可以获得最佳带宽性能。另外,当入射光源的孔径较小时,光纤中只有部分模式激发, 色散小于光纤中全部传输模被激发的情形,因而也可以获得相对高的工作带宽。用作短距离光传输介质的塑料光纤, 按其折射率分布形状可分为两种:阶跃折射率分布塑料光纤和梯度折射率分布塑料光纤。阶跃折射率分布塑料光纤由于模间色散作用使人射光发生反复的反射,射出的波形相对于人射波形出现展宽, 故其传输带宽仅为几十至上百兆赫兹/千米。氟化梯度折射率分布塑料光纤从选择低色散的材料出发,再以优化的梯度折射率分布手段,即可将其折射率分布指数在0.85~1.3μm 波长范围内选定为2.07~2.33,从而抑制模间色散,控制出射光波相对于人射光波展宽的效果,进而可制得传输带宽高达几百兆赫兹/千米至10GHz/km 的梯度折射率分布的塑料光纤[2]。
1.3 色散特性
阶跃型塑料光纤的数值孔径(NA)在0.5 左右,带宽距离可以达40MHz˙100m,已应用于工业控制中,但由于其带宽较小,不适于在航空和室内的通信网络中应用。小NA 阶跃型塑料光纤的NA 值约为0.25~0.3。较小的NA 使得光纤中只传输较低阶的模式, 从而减小了模式色散,使带宽提高210MHz˙km。为了保证良好的连接性能,NA 值不能再小。多模梯度光纤的带宽与光纤的折射率剖面、光源的谱宽和入射孔径有关。当光纤具有接近于抛物型的最佳折射率剖面时,光纤的色散最小,可以获得最佳的带宽性能。因材料色散较大,在650nm 波长的带宽仅为3GHz˙100m。全氟化渐变型塑料光纤在650nm 波长的带宽大约是PMMA渐变型塑料光纤的3 倍。材料在近红外区的色散较小, 全氟化渐变型塑料光纤在1300nm 波长的带宽可以达到100GHz˙100m,比石英多模光纤的带宽更高。
1.4 温度特性
塑料光纤耐热性能差是一大缺点,这主要是因为塑料本身的熔点低。在通信过程中,较高的环境温度影响了GI-POF 的折射率分布形状是否稳定, 从而影响塑料光纤的性能。目前试验中PMMA POF 连续200小时在85°C 状态下损耗增加小于0.15dB/m, 常温下连续工作150 小时损耗增加小于0.02~0.035dB /m,稳定度接近200~700 个小时。对于商用的梯度聚合物光纤,可工作于-40~85°C 的温度范围,长时间地加热到70℃而不会对光纤截面的折射率分布线型造成影响,同时也不会影响到光纤的带宽和传输损耗。