3 储能技术与分布式发电及微电网系统
分布式发电及微电网系统具有鲜明的特点:能独立运转或者并网,接近电力消费终端,容量相对较小(kW级别到几十MW级别)等。针对其特点,储能单元被认为是此类系统的必备部件。储能单元可起到抑制系统和输出功率的扰动、用于短时过渡供电、调峰填谷、保持电压频率稳定、提供可靠备用电源、提高系统并网运行可靠性和灵活性等作用。目前已有一些建成的储能示范工程应用于分布式发电与微电网系统,如美国ZBB公司商业建筑储能系统、西藏日喀则拉孜风光互补离网项目、陕西世园会充电及风光储微网项目。2013年,欧洲最大的储能电池设备在英国南部贝德福德郡的莱顿巴扎德启动,预计在2016年开始投入运营,建成后的容量为6兆瓦,将使用锰酸锂技术存储电能,并在用电高峰期供能,以满足电网需求。2015年4月30日20时,电动车制造商特斯拉推出家庭储能“Powerwall”电池组,这一整套设备可以和当地电网集成,以处理过剩的电力,实现转移负荷、电力备份以及太阳能发电自给。日本大和房建工业于2011年10月推出了具有蓄电池系统控制功能的智能住宅。从储能运用的角度出发,为了达到短时供电、调峰填谷和备用电源的目的,储能单元系统须具备大容量能量/功率的能力。
4 储能技术与电动汽车
电动汽车与智能电网相结合的V2G技术是一种新近发展中的技术。由于电动汽车较长时间地处于停止状态,车载电池作为储能单元,与电网的能量管理系统建立通信,从而达到电动汽车与智能电网能量转换互补的目的。利用V2G技术,使电动汽车具有潜在地参与较小规模电力电网系统调峰调频、电能质量保证和备用电源等应用。电动汽车蓄电池(如铅酸、锂电池等)甚至超级电容器都有可能作为V2G系统的储能单元。如日本NEC、美国Maxwell等公司在电动汽车、轨道交通系统等领域中就运用了超级电容技术。日本式智能电网政府实现目标:电动汽车/插电式混合动力占新车的百分比从0.4%上升到2020年的20%,通过V2H技术,EV/PHV提供大容量储能电池,也可以用于电力峰值转移或应急电源,来提高电力汽车/插电式混合动力汽车储能电池的应用。在Keihanna,实时监测100辆电动汽车充电量的系统及应用车载监控的需求响应来抑制充电量的系统验证正在进行。
5 储能技术在智能电网应用中所面临的挑战和机遇
储能作为一项高科技含量高工程要求的新兴技术,还面临着重大的挑战:
(1)技术挑战。大部分储能技术成熟度还有待提高,特别是关键材料、核心技术。另外储能在电力电网系统应用时间较短,而电网对于安全可靠性要求很高,储能设备产品的定型周期需要长时间的验证;
(2)经济挑战。与关键技术、能源效率以及应用场合密切联系的投资和维护成本将成为各种储能技术选择发展的关键考量;
(3)政策挑战。虽然各国都制订了发展储能技术的战略,但在如何管理储能系统和如何对于储能技术的研发给予支持仍然需要政策细化。
同时,我们也看到,去年中国储能项目装机增长已超过全球增速。截至2013年底,除抽水蓄能、压缩空气储能及储热外,全球储能项目总装机容量达73.6万kW,较2012年增长了12%。而中国储能产业发展速度则相对更快。截至2013年底,中国已运行的储能项目装机规模达5.15万kW,较2012年增长了39%。快速增长涉及可再生能源并网、分布式发电及微网、电动汽车等多个方面。
上海市的社会经济地位决定了上海电网是一个对可靠性和电能质量要求极高的电网。随着城市产业结构的调整,第三产业的比重增加,峰谷差不断加大,对供电可靠性要求高、负荷峰谷差大的用户数量不断增加。
从2006~2007年,国家电网公司、上海市科委和国家科技部分别下达经费共计4910万元,支持上海电网储能技术研究建设项目。到2011年初,该项目已完成总额定容量410kW/1300kWh电池储能系统的建设,分布在上海漕溪变电站、前卫变电站和白银变电站。其中,漕溪站建成镍氢电池(6组,额定容量为100kW/200kWh)、锂电池(3组,额定容量为100kW/200kWh)和铁电池(2组,额定容量为100kW/80kWh)储能系统;前卫站建成全钒液流(额定容量为10kW/20kWh)储能系统;白银站建成钠硫电池(18组,额定容量为100kW/800kWh)储能系统。
相关扶持政策
我国相继出台了一些储能相关法规、规划和办法等,并给予资金支持发展储能产业。2010年的《可再生能源法修正案》中第一次提到储能的发展,2011年发布的《中华人民共和国国民经济和社会发展第十二个五年规划纲要》中提出依托储能等先进技术,推进智能电网建设。从2013年底起,国家能源局的《关于分布式光伏发电项目管理暂行办法的通知》中鼓励业界各单位或个人投资建设和经营分布式光伏发电项目。财政部发布了分布式光伏发电自发自用电量免收可再生能源电价附加费等政策,旨在降低用户自发自用成本。分布式发电相关政策与补贴的陆续出台为光储模式打下了基础。国务院办公厅2014年11月印发的《能源发展战略行动计划(2014-2020)》中指出,通过科学安排调峰、调频、储能配套能力,切实解决弃风与弃光等问题,作为影响未来能源大格局的前沿技术,储能在我国已获得前所未有的高度关注。
目标与思路
作为智能电网发展中的重要环节和核心技术,储能技术可以有效地实现需求侧管理,减小昼夜间峰谷差,平滑负荷;可以提高供电可靠性和供电质量;可以提高电力设备利用率,降低供电成本;还可以促进新能源的利用;同时可作为提高系统运行稳定性、调整频率、平抑负荷波动的技术手段。上海电网处于华东电网的末端,负荷密集,峰谷差大,供电可靠性要求高,储能系统已成为电网调峰的必要补充,市场需求主要来自上海市落地储能电站,高可靠性供电需求以及新能源接入三部分。发展大规模储能技术将成为上海发展智能电网,构建智慧城市的一项影响全局,关乎长远的重大举措。
总体目标:立足技术可靠性、规模化、经济性三个方面,重点发展以锂离子蓄电池、新型铅酸电池、钠硫电池和超级电容器为代表的大规模化学储能技术,利用电池产业生态链,重点突破电池储能系统优化设计、系统集成和并网可靠性接入三大关键科学问题,通过较大规模的工程示范和运营维护,从技术可靠性和经济性两个层面进行系统评价,在电动汽车市场的大力牵引下,随着电池成本的不断降低,不断完善本地储能政策和相关标准规范,力争“十三五”中期实现储能产业在上海的率先规模化应用。
项目实施后的功能描述
储能技术是电力系统、能源结构优化以及电能生产消费变革的重要支撑性技术。它可以对未来智能电网提供各种不可或缺的实际应用。目前储能技术已处在爆发性发展和革命性突破的前夜,通过对规模等级、技术成熟水平、经济效益、应用限制与环保等方面的研究和实施,以期形成如下功能:
(1)大电网:利用储能系统提供的快速响应容量,可以快速补偿系统中的不平衡功率,应该可以用最直接、最有效的方式提高电力系统稳定性。
(2)新能源接入:一是大幅度降低可再生能源发电的成本,使其可以和常规能源发电相比拟;二是尽可能多地消纳可再生能源发出的电力,最终实现全部消纳这些电力;三是提高电能源的利用效率。
(3)微网:提高系统稳定性,当分布式电源供电不足或与微网断开时,储能系统起到维持设备继续运行的功能
(4)电动汽车及轨道交通:形成完整V2G,V2H生态圈,能源滚动利用,资源优化配置,以极低的能量闲置和浪费换取更高的单位效益,智能交通和智能电网的良性循环。
(5)其它:形成完善的电池梯度利用网络,并与信息化网络关联,实现电池全生命周期有处可寻,有地可用,有史可查。