(3)缺点
全周期效率较低,制氢效率只有70%左右,而制合成天然气的效率60-65%,从发电到用电的全周期效率更低,只有30%-40%
(4)应用
将氢与二氧化碳合成为甲烷的过程也被称作为P2G技术(powertogas)。德国热衷于推动此项技术,已有示范项目在德国投入运行。以天然气为燃料的热电联产或冷、热、电联产系统已成为分布式发电和微电网的重要组成部分,在智能配电网中发挥着重要的作用,氢和合成天然气为分布式发电提供了充足的燃料。
六、各种储能技术的性能比较和应用选择
储能技术种类繁多,他们的特点各异。实际应用时,要根据各种储能技术的特点以及对优缺点进行综合比较来选择适当的技术。供选择的主要特征包括:①能量密度(kWhorMWh);②功率密度(kWorMW);③响应时间(-ms,-s,-minute);④储能效率(充放电效率);⑤设备寿命(年)或充放电次数;⑥技术成熟度;⑦经济因素(投资成本、运行和维护费用);⑧安全和环境方面的考虑。
在实际工程项目中,要根据储能技术的上述特征,应用的目的和需求,来选择其种类、安装地点、容量以及各种技术的配合,还要考虑用户的经济承受能力。
6.1放电时间对比
储能技术性能如果按放电时间划分,可分为
①短放电时间(秒至分钟级),如超级电容器、超导储能、飞轮储能,
②中等放电时间(分钟至小时级),如飞轮储能、各种电池等,
③较长放电时间(小时至天级),如各类电池、抽水蓄能、压缩空气等,
④特长放电时间(天至月级),如氢和合成天然气。
上述放电时间短的,常常是功率型的,一般可用作UPS和提高电能质量。中等放电时间的,可用于电源转接。较长或特长时间的,一般是能量型的,可用于系统的能量管理。目前应用最广泛的大型抽水蓄能可以解决天级的储能要求,要满足周和月级的储能需求要依靠其他种类储能手段,如氢和合成天然气。
不同储能技术的储能容量能量和放电时间的比较示于图,可以看出不同的储能技术处于图中不同的位置。